The role of opaque2 in the control of lysine-degrading activities in developing maize endosperm.

نویسندگان

  • E L Kemper
  • G C Neto
  • F Papes
  • K C Moraes
  • A Leite
  • P Arruda
چکیده

We have isolated a cDNA clone, designated ZLKRSDH, encoding the bifunctional enzyme lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) from maize. The predicted polypeptide has an N-terminal LKR domain and a C-terminal SDH domain that are similar to the yeast LYS1 and LYS9 monofunctional proteins, respectively. The maize LKR/SDH protein is located in the cytoplasm of subaleurone endosperm cell layers. Transcripts and polypeptides as well as enzyme activities showed an upregulation and downregulation during endosperm development. The developmental expression of ZLKRSDH was examined in normal and opaque2 seeds. In the mutant endosperm, mRNA levels were reduced by >90%, with concomitant reductions in polypeptide levels and LKR/SDH activity. These results suggest that lysine levels in the endosperm are likely to be controlled at the transcriptional level by the Opaque2 transcription factor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

eEF1A isoforms change in abundance and actin-binding activity during maize endosperm development.

Eukaryotic elongation factor 1A (eEF1A) appears to be a multifunctional protein because several biochemical activities have been described for this protein, in addition to its role in protein synthesis. In maize (Zea mays) endosperm, the synthesis of eEF1A is increased in o2 (opaque2) mutants, and its concentration is highly correlated with the protein-bound lysine content. To understand the ba...

متن کامل

Epistatic interactions between Opaque2 transcriptional activator and its target gene CyPPDK1 control kernel trait variation in maize.

Association genetics is a powerful method to track gene polymorphisms responsible for phenotypic variation, since it takes advantage of existing collections and historical recombination to study the correlation between large genetic diversity and phenotypic variation. We used a collection of 375 maize (Zea mays ssp. mays) inbred lines representative of tropical, American, and European diversity...

متن کامل

Introgression of opaque2 into Waxy Maize Causes Extensive Biochemical and Proteomic Changes in Endosperm

Waxy maize is prevalently grown in China and other countries due to the excellent characters and economic value. However, its low content of lysine can't meet the nutritional requirements of humans and livestock. In the present study, we introgressed the opaque2 (o2) allele into waxy maize line Zhao OP-6/O2O2 by using marker-assisted selection (MAS) technique and successfully improved the lysin...

متن کامل

Opaque16, a high lysine and tryptophan mutant, does not influence the key physico-biochemical characteristics in maize kernel

The enhancement of lysine and tryptophan in maize is so far basedon opaque2(o2) mutant, that along with the endosperm-modifiersled to development of Quality Protein Maize[QPM]. Though many mutants improving the endospermic protein quality were discovered, they could not be successfully deployed. Recently discovered opaque16 (o16)mutant enhances the lysine and tryptophan content in maize endospe...

متن کامل

Pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase induction and attenuation of Hsp gene expression during endosperm modification in quality protein maize.

Quality Protein Maize (QPM) is a hard-endosperm version of the high-lysine opaque2 (o2) maize (Zea mays) mutant, but the genes involved in modification of the soft o2 endosperm are largely unknown. Pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase (PFP) catalyzes the ATP-independent conversion of fructose-6-phosphate to fructose-1,6-bisphosphate in glycolysis. We found a large i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 1999